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Abstract— Short-to-medium term temperature prediction in
high resolution is a very challenging task, involving meteorology,
physics, mathematics, geography, and many other subjects. Its
purpose is to fit a complex function from historical meteorological
data to predict the future 1–5 days temperature, which is a
typical spatio-temporal prediction problem. Meteorological data
show complex correlations in local space. Most of the existing
machine learning methods are based on image pixel-level tasks
or spatio-temporal prediction tasks, which model meteorological
data without considering the characteristics of meteorological
data and use rough global patterns to model local space which
would lose many details. To address the above issues, our work
fine-grained conditional convolution network (FCCN) proposes
a novel grid-level conditional convolution module, including
a local geographic adaptive weight (GAW) and a local data
adaptive weight (DAW). These two components are integrated
into a multiscale meteorological fusion gated recurrent unit
(GRU) architecture for the end-to-end temperature prediction.
Experiments in real-world datasets from ERA-5 show our FCCN
model has a better performance than all other baseline methods.

Index Terms— Conditional convolution, deep neural network,
multiscale feature, temperature prediction.

I. INTRODUCTION

WEATHER prediction is a work that uses past weather
data to predict future weather, such as temperature and

wind. It is closely related to our life. Precise prediction of
weather can affect the decision of industrial and agricultural
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Fig. 1. Overview of our proposed model. (a) Multiscale meteorological
fusion architecture. (b) Fine-grained conditional convolution. The historical
weather data are modeled by the multiscale feature extractor and each feature
extractor is composed of ConvGRU with fine-grained conditional convolution.

production [1]. Meteorological data have a strong spatio-
temporal correlation, and sufficient modeling of the correlation
between time and space dimensions is the key to weather
prediction.

In the traditional numerical model numerical weather pre-
diction (NWP [2], [3]), the meteorological data are calculated
by a large number of mathematical and physical expressions to
obtain a fine-grained spatio-temporal prediction, but this often
requires the supercomputer. Machine learning algorithms, such
as autoregressive integrated moving average (ARIMA [4], [5]),
usually regard weather prediction problems as time series
and ignore the complex spatial relationships which are very
important for this task. With the development of deep learning,
pixel-level vision tasks like semantic segmentation are used to
deal with grid-based weather data. In addition, ConvRNN [6],
which is based on spatio-temporal series prediction, is also
widely used in weather prediction. Most of the existing deep
learning models have a good performance on whole-world
weather data, but not on fine-grained local data with less than
1◦ resolution. In our work, our attention is paid to fine-grained
local temperature forecasting task.

Pixel-level vision tasks [7], [8], [9] usually use different-
scale convolution models to decode on the backbone to get
pixel-level output. There is not such a large dataset similar
to ImageNet [10] in meteorological forecast tasks, so we
cannot train a general backbone such as ResNet [11]. We need
to directly model meteorological data. Spatial modeling of
meteorological data usually uses image modeling strategies
such as convolution [12], [13], or vision transformer [14], [15],
but the geographical characteristics of meteorological data are
not well captured by this kind of model. The model usually
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performs well with simple geographical distributions such as
sea surface and plain, but it performs poorly in other complex
geographical distributions. In addition, the intervals of points
in meteorological data are not strictly sampled equally. As the
latitude increases, the distance between adjacent points with
equal longitude is shrinking. Meanwhile, meteorology presents
a strong local geographic relevance, i.e., the closer the
two points are, the more similar the climate pattern is.
In conclusion, the main challenge can be summarized as
follows: 1) the geographical relations are not fully utilized
for weather modeling, which is important in NWP and 2) the
existing models do not sufficiently use the meteorological prior
knowledge. How to use meteorological knowledge to organize
the models is a difficult point to be explored.

In this work, we propose a temperature prediction model
fine-grained conditional convolution network (FCCN), which
can effectively combine geographical and meteorological prior
knowledge into weather modeling. The main contributions of
this article can be summarized as follows.

1) We propose a dynamic convolution mechanism in which
convolution kernel parameters are shown in Fig. 1(b),
which consist of a local geographic adaptive part,
a local data adaptive part, and a global shared part.
The dynamic convolution mechanism can effectively add
context features to the model and enhance the local
modeling capability and reduce the prediction error of
different climate patterns.

2) We construct a multiscale meteorological fusion
architecture as shown in Fig. 1(a). We use the
dynamic convolution operator mentioned above and the
multiscale semantic information extraction module to
build the FCCN. Same to the multiscale meteorological
theory in meteorology, the information with different
scales in our model for weather prediction is useful.

3) The method we proposed was tested on the data
of Beijing, Xi’an, and London in the ERA5 real
weather dataset, and achieves state-of-the-art (SOTA)
performance in the local temperature prediction task.

II. RELATED WORK

The temperature prediction problem is usually regarded as a
spatio-temporal prediction problem with grid-level granularity,
and different scholars have different insights into this problem.
This section will be developed in the following aspects: 1) we
introduce image-based meteorological modeling methods, then
we introduce spatial-temporal-based meteorological modeling
methods and 2) finally, we introduce conditional convolution
and its application in weather prediction.

A. Image-Based Meteorological Modeling

Some scholars model the meteorological data as a
multichannel image. They concatenate the feature dimension
and temporal dimension of the meteorological data and treat
temperature prediction as a transformation task from one
multichannel image to another multichannel image [16], [17],
[18], [19], [20], and [21]. This task is similar to the image
semantic segmentation task in computer vision, and could

reuse some deep learning models of pixel-level tasks. Rasp
and Thuerey [22] use 19 layers ResNet to predict global
mesoscale weather at 5.625◦ resolution, and the u/v wind
and temperature are predicted. This work models the whole
world as an image with 32 × 64 size, and the meteorological
information of four-time slices is stacked to predict the
weather of the next three and five days. It uses the ERA-5
and CMIP-6 datasets and uses two strategies (the direct
approach and the continuous approach) to make the prediction.
FourCastNet [23] uses the adaptive Fourier neural operators
(AFNO) [24] (an improved Vi-T model) to model global
0.25 × 0.25 meteorological data as a 720 × 1440 high-
resolution image. A continuous approach “Fine-Tuning” is
used for training, i.e., a slice Xk , which stands for the weather
data of the kth time, is used to predict the next slice Xk+1, and
then the Xk+1 is used to predict the Xk+2, and so on iteratively.
For each step of the prediction, the model is updated by
backpropagation. Among the above models, FourCastNet uses
the smallest resolution of 0.25◦ (about 55 km at the equator),
which cannot use for real-life production directly. In addition,
the above models are evaluated globally, while the ocean area
accounts for 0.71 of the total area, the weather patterns of
the ocean are simple, and the landscape is largely undulating,
which reduces the difficulty of temperature prediction.

B. Spatio-Temporal-Based Meteorological Modeling

Other scholars have built meteorological prediction
models based on spatio-temporal prediction problems
[25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],
mostly based on ConvRNN [6] model with slight improve-
ments. These models are basically a mixture of ConvRNN
and full convolutional network, and are completely based on
the data-driven training method for meteorological prediction.
MetNet [36] uses ConvLSTM as the temporal encoder and
axial attention [37] as the spatial aggregator to model the
spatial and temporal features of meteorological data serially.
The model treats the precipitation problem as a multiple
regression task and has some improvement compared to
the high-resolution rapid refresh model (HRRR) baseline.
Deep generative models of radar (DGMR) [38] uses the
convolutional network as the encoder and Conv gated recurrent
unit (GRU) as the decoder for precipitation prediction and
uses the generative adversarial strategy to ensure the spatio-
temporal stability of the prediction generated by the generator.
This model has been evaluated by experts to achieve better
prediction results and produce greater economic benefits.
Ms-Nowcasting [39] uses ConvLSTM as the encoder of
meteorological data to predict precipitation, and proposes to
use the output of HRRR as part of the input to add the
physical operator to the model. It provides an idea that using a
large area of 1280 × 1280 km2 to predict future precipitation
data for a central local area of 256 × 256 km2. ConvRNN
can capture spatial correlation while modeling temporal series
and can greatly reduce computational complexity. Using
ConvRNN as the backbone is the best choice for spatio-
temporal modeling and is widely used in the processing of
meteorological data.
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Fig. 2. Graph of FCC network framework. (a) Overall architecture. c is a convolution operation with kernel size of 1 × 1, and stride of 1 for a projection
from input dimension to embedding dimension; d is a convolution operation with kernel size of 2 × 2, padding of 0, and stride of 2; u is a deconvolution
operation with a kernel size of 4 × 4, padding of 1 and stride of 2; dc is convolution operation with kernel size of 1 × 1, stride of 1 for a projection to
output dimension. (b) FCCG cell architecture. (c) Fine-grained conditional convolution operator architecture.

C. Conditional Convolution in CV and Meteorological
Modeling

Convolution is often used for weather prediction due to
its efficiency in processing grid point data [40]. The fine-
grained weather data can also be modeled by convolution
because of the same data format, but it has some differences.
The propagation patterns of weather data are affected by
geography, season, and specific weather conditions. The
vanilla convolution kernel models a feature map with the
same pattern. Therefore, a uniform global shared convolution
kernel does not capture these local patterns effectively.
CoAtNet [41] proposes to increase the receptive field of CNN
by adding the convolutional kernel with adaptive attention
weight, and the model achieves the SOTA results on ImageNet.
CondConv [42] parameterizes the convolution kernel with a
linear combination of multiple expert knowledge, and the
expert weights are obtained by using GAP + FC + Sigmoid
on the input feature map of the current layer. ODConv [43]
leverages a novel multidimensional attention mechanism to
compute four types of attention for the convolution kernel
along all four dimensions of the kernel space in a parallel
manner. These works [44], [45], and [46] have improved
the convolution kernel by adding dynamic weights to the
global-shared convolution kernel on sample-by-sample and
layer-by-layer level. Conditional convolution increases the size
and capacity of the network, improves the global modeling
capability of the model, and enhances the performance of the
model. However, these conditional convolution methods are
not fully applicable to weather prediction due to the unique
local correlation of weather data. Conditional local convolution
(CLC) [47] for graph-based weather prediction proposes to use

local conditional kernels for message aggregation instead of
the original graph convolutional kernels, and the effectiveness
of the idea is experimentally demonstrated.

Referring to the previous experience and the problems
existing in the model, we introduce the dynamic convolution
network into meteorological modeling to find more weather
patterns for accurate temperature prediction. Compared with
the other dynamic convolution networks, our method has large
differences in parameter generation method, motivation, and
application scenario. Our model establishes a grid point-level
dynamic convolution operator and inserts the operator into a
multiscale ConvGRU.

III. METHODOLOGY

In this section, we first give the mathematical definition
of the grid-based spatio-temporal weather prediction problem
we are to solve in this article. Then, we give a complete
description of our model. Finally, we focus on our proposed
convolution operator, fine-gain conditional convolution (FCC).

A. Problem Definition

In the grid-based spatio-temporal prediction problem, the t th
frame of the input data can be represented as X t ∈ RH∗W∗C ,
where H and W represent the height and the weight of
the input data, and C represents the channel size, like
a dense image matrix. T frames are concatenated in the
time dimension to obtain the overall spatio-temporal data
X ∈ RH∗W∗C∗T . There are also some contextual features G like
date and altitude, which is useful in this task. Our problem is to
fit a function F based on the last data and contextual features
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to make a downscaled prediction of the future weather Y . The
mapping function can be expressed as follows:

{XT −t , . . . , XT −1, XT ,G}
F

−→ {YT +1, . . . , YT +τ } (1)

where X i ∈ RH∗W∗Cin is meteorological data in i th time
slice, Yi ∈ RH∗W∗Cout is temperature data in i th time slice,
G ∈ RH∗W∗CG is contextual feature data in i th time slice,
Cin,Cout,CG represent the channel size of the input data, the
output temperature data and the contextual feature data, and
F is a regression function with learnable parameters.

B. Overview of the Proposed Network

We present the framework of FCCN shown in Fig. 2(a).
It consists of a stacked spatio-temporal encoder and
decoder layer. As shown in Fig. 2, a spatio-temporal
encoder is constructed by convolution block, fine-grained
conditional convolution GRU (FCCG), and downsampling
block. A decoder is constructed by deconvolution block,
FCCG, and upsampling block. FCCG will be introduced
in the next paragraph. By stacking multiple spatio-temporal
layers, FCCN is able to handle spatial dependencies at
different temporal levels. When predicting T + 1∼T + τ

hour temperature, we need T − t∼T hour original weather
data and contextual feature data. The original weather data
first be encoded into feature maps of three sizes by a c
block, FCCG, d block, FCCG, d block, FCCG, where c, d
stand for a convolution block, downsampling block. Then the
decoder will use the three feature maps to get the prediction
data by FCCG, u, FCCG, u, FCCG, and dc, where the u
and dc are upsampling block and convolution block. The
contextual feature includes attitude and date data. The attitude
data is processed by the max-pooling operator into three sizes
corresponding to the feature map. The date data are embedded
and broadcasted to different sizes like feature maps. The
operation details of the contextual feature will be discussed
in Section III-C.

We choose MSE as the loss function of FCCN. Similar to
the large viewport (LV) prediction method in MS-nowcasting
[39], we also use the method that the input viewport is larger
than the target. The input tensor of our model is Cin × 64
× 64, and the predicted tensor is Cout × 32 × 32, which is
cropped from the central input region geographically. The loss
function can be expressed as follows:

loss(Xn, Yn) =

32∑
i=1

32∑
j=1

(Xn,i+16, j+16 − Yn,i, j )
2 (2)

where Xn ∈ R64∗64∗C , Yn ∈ R32∗32∗C is cropped from the
input central area and upper left point offset of horizontal and
vertical coordinates is eight, standing for the nth ground truth
and prediction, C is the number of the output channel.

C. Multiscale FCCG Architecture

The ConvRNN model replaces the fully connected networks
with the convolution networks in RNN, which can model 2-D
time series data like meteorological data. GRU is a variant of
RNN that uses reset gate and update gate to avoid gradient

vanishing problems and extract features better in time series
data. Referring to the recent algorithms, ConvGRU is popular
in weather forecast tasks, and [47] experiment on 1-D-CNN,
RNN, and GRU for meteorological data modeling, which
shows the effectiveness of GRU. In addition, image-based
models ignore the correlation of meteorological data in time
series, and we use GRU to model the time dimension to
effectively capture the characteristics of spatio-temporal series.
To sum up, we use the fine-grained conditional convolution
operator to replace the convolution operator in ConvGRU for
the weather information encoder and decoder, named FCCG.
Both the encoder and decoder of FCCN have three FCCG
layers, and the specific settings of each layer will be discussed
in the next paragraph. The encoder part is similar to the regular
sequence prediction task. In the encoder stage, the output of
each hidden layer at time t is downsampled twice as the input
of the next hidden layer. The bottom layer of the decoder uses
the full zero tensor as the input, and the hidden state output of
the encoder is used as the hidden state input of the decoder.
To match the encoder hidden state output, each hidden layer
output of the decoder is upsampled two times as the input of
the next layer. We set the output of the decoder’s last layer
as the result of the temperature prediction. The mathematical
formulation of FCCG can be defined as

zt = σ( f ccz(concat(xt |ht−1))) (3)
rt = σ( f ccr (concat(xt |ht−1))) (4)

h̃t = tanh( f cch(concat(xt |rt ◦ ht−1))) (5)

ht = (1 − zt ) ◦ ht−1 + zt ◦ h̃t (6)

where ht−1, zt , rt , ht is the last hidden state, the update gate,
the reset gate, and the hidden state, respectively, f cc is a
fine-grained conditional convolution operator, ◦ represents the
Hadamard product.

Fusion features from different scales can increase the
receptive field of the model and capture the hierarchical
features of meteorological data. In the traditional weather
forecast workflow, for a system in the atmosphere, we can
determine the scale of the system according to the spatial
range, simulate the atmospheric diffusion of different scales,
and then aggregate forecast information from different scales.
On the spatial scale, the atmospheric motion can be divided
into several scales. For example, the range of the atmospheric
boundary layer is 1 km; the range of the convection cell and
the cumulonimbus is 10 km; the range of the frontal surface
and the squall line is 100 km. So, using the information
of different scales can simulate atmosphere changes better
and predict future weather better. We use convolution layers
whose convolution kernel size is 3 × 3 and stride is 2 for
downsampling between each layer, and we use three-layer
FCCG to get three different scale features. Unlike the skip
connection operation of U-net, a GRU block accepts both
input and hidden state data. We use the different scale features
that the output in the previous step as the hidden state
input to each decoder, and this operation can replace the
feature concatenation operation. On the decoder, upsampling
is performed between each layer using a convolution operation

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on May 24,2024 at 05:16:40 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: FCCN WITH GEOGRAPHIC FEATURES FOR TEMPERATURE PREDICTION 4704111

with the convolution kernel size of 4 × 4, the stride of 2, and
the padding of 1.

D. Fine-Grained Conditional Convolution

The meteorological pattern should have the following
properties [47]: location-characterized, smooth, and common.
Location-characterized emphasizes that local convolution
kernels should be similar to local meteorological patterns.
smooth emphasizes the smoothness of the convolution kernels,
i.e., points that are physically close or have similar local
spaces should have similar convolution kernels, and common
emphasizes that the local convolution kernels are adjusted
according to the local space but shared across different
local spaces. Based on the inspiration of these three points,
we design fine-grained conditional convolution.

1) Global Shared Weight: Unlike the conditional convo-
lution with global shared dynamic parameters, our dynamic
parameters are specific to each operation in the convolution
window. The parameters of the convolution kernel of
each grid point are from three parts, the global shared
convolution kernel parameters, the local geographic data
adaptive convolution parameters, and the local data adaptive
convolution parameters. The global shared weight (GSW) w
is like the vanilla convolutional kernel, which is shared by all
raster points and is responsible for aggregating information
from different regions. The role of the GSW is to add
different weights to the information aggregated from each
direction. Due to the different local conditions, the information
aggregation weights are different from each direction, and the
weight of global shared convolutional kernel is trained by all
points.

2) Geographic Adaptive Weight: The local geographic
adaptive weight (GAW) is related to the local meteorological
pattern, which is determined by the local geographic feature
and season together. For the convolution central grid point i ,
its geographic feature and month information can be expressed
as mi0, and its eight surrounding neighbor grid points are
mi j , 1 ≤ j ≤ 8. We assume that its local weather pattern
kernel is φ(mi0), and the local convolution kernel φ(mi0) is
given by {mi0|mi j , 1 ≤ j ≤ 8}, we use multilayer perceptron
to approximate this local GAW and use the sigmoid activation
function to confine the data to between 0 and 1, as

φ(mi0) = Sigmoid(mlp(mi0|mi j )), 1 ≤ j ≤ 8 (7)

where mlp is a two-layer linear model with a leakyrelu
activation function between the layers and i ∈ [h×w],
denoting all the raster points of a frame. The output channel
of φ(mi0) is equal to the input channel of the layer.

3) Data Adaptive Weight: The last part of the convolution
kernel is calculated by the value of local meteorological
data, which is called the local data adaptive weight (DAW).
The specific value of local meteorological data also affects
the aggregation of the local information. For grid point i , the
specific value of meteorological data is xi0, and its neighbor
grid points are {xi j , 1 ≤ j ≤ 8}, which determines the
convolution kernel of meteorological elements ψ(xi), we use
another multilayer perceptron to fit the local meteorological
DAW and use sigmoid to limit the values of the parameters.

Fig. 3. Schematic of atmospheric propagation in Xi’an.

The multihead self-attention structure used in the transformer
has a good result on machine translation tasks. The multiheads
can capture multiple dependencies between tokens. So, we use
the multihead mechanism to capture more information patterns
in the adaptive convolution kernel of meteorological data. The
local DAW is as follows:

ψk(xi0) = Sigmoid(mlpk(xi0|xi j )), 1 ≤ j ≤ 8 (8)
ψ(xi0) = concat(ψk(xi0)), 1 ≤ k ≤ K (9)

where i and j are defined in the same way as in the previous
local GAW, k denotes the kth heads and K is the number
of the heads. K mlp operations produce the K heads of the
data adaptive convolution kernel, and concatenating the K
heads produces the final data adaptive convolution kernel. The
output channel of ψ(xi0) is equal to the output channel of this
layer. If we obtain the parameters of the three components,
the overall fine-grained convolution operation is expressed
mathematically as follows:

f cc(xin) = [φ(mi )⊙ w ⊙ ψ(xi )] ∗ xin + b (10)

where ∗ is convolution operation, w, φ(mi ), and ψ(xi )

represent GSW, local GAW, and local DAW, respectively. b
is the bias which is like vanilla convolution.

Local geographical features have a very important impact
on the propagation of the atmosphere. Different landforms
have different blocking effects on meteorological transmission.
In addition, atmospheric pressure, light, and other factors
also affect meteorological propagation. As shown in Fig. 3,
Xi’an is affected by the cold front from the north in
winter and Qin Ling Mountains blocks this spread. So, the
north of the Qinling Mountains presents a dry and cold
weather pattern, while the Qinling Mountains and the south
are less affected by the cold front; When the warm front
from the south flows northward, the south of the Qinling
Mountains presents a humid and hot weather pattern, and
the Qinling Mountains and the north are less disturbed.
The difference in meteorological conditions and terrain
has caused strong irregular propagation to the atmosphere.
Our algorithm dynamically adjusts the convolution kernel
parameters according to the terrain and weather data, so that
the appropriate strategy of local information aggregation
is used. Compared with the static convolution operation,
our model has a better performance in irregular weather
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patterns. Our method FCC can adaptively adjust convolution
parameters based on data and geographical features, explicitly
modeling the laws of atmospheric propagation, and capturing
local meteorological patterns more effectively than static
parameter convolution. Therefore, FCC is more effective in
local meteorological modeling.

IV. EXPERIMENT

This section introduces the experiments in detail. Here,
Section IV-A the details of our dataset are introduced,
Section IV-B presents baselines, metrics, and details of
our experiment, Section IV-C reports the performance
measurements, Section IV-D discusses root mean square
error (RMSE) curves of five prediction days and season-by-
season comparison, and Section IV-E provides a discussion on
ablation study and parameter sensitivity.

A. Dataset

We build our experiments on the ERA-5 dataset [48], which
is the fifth generation European Centre for Medium-Range
Weather Forecasts (ECMWF) atmospheric reanalysis of the
global climate. Reanalysis combines model data with observa-
tions from across the world into a globally complete and con-
sistent dataset. As shown in Table I, We select data from three
regions, covering London area (−2.7◦

∼3.7◦N, 41.3◦
∼53.7◦E),

Beijing area (36.8◦
∼43.2◦N, 113.3◦

∼119.7◦E), and Xi’an
area (30.4◦

∼36.7◦N, 105.3◦
∼111.6◦E), with an input grid of

64 × 64 points, with a horizontal resolution of 0.1◦
× 0.1◦, and

an output grid of 32 × 32. We choose 22 factors broadly based
on meteorological intuition as used in model output machine
learning (MOLR) [49]. The data are from January 1, 2002 to
December 31, 2018, and the data slice interval is 6 h, and
one day is split into four intervals. In addition, the elevation
of each region in China was obtained from the PTPE dataset,
and the elevation of London area was obtained from Google
Maps interface. The altitude statistics of three areas can be
found in Table II. We selected January 1, 2002, to December
31, 2016, as the training set, including 5478 days and 21 912
frames of meteorogram, used 365 days of data from January 1,
2017, to December 31, 2017, as the evaluation set, and used
365 days of data from January 1, 2018, to December 31, 2018,
as the test set for all three regions.

B. Baselines, Metrics, and Details

We used the following five baselines to compare the
performance with FCCN.

1) MOLR [49] uses linear regression for weather predic-
tion, and we use year-around and adjacency point feature
engineering methods for processing, concatenating the
elevation, and date information with the original data,
and establish a three-layer linear regression.

2) RN19 [22] uses a deep residual convolutional neural
network to predict wind, temperature, and precipitation.

3) FourCastNet [23] is a vision transformer-based weather
prediction model, which replaces the transformer
operator with an ANFO.

4) UU-Net [50] regards weather prediction as image
segmentation and use U-net to capture multiscale
features.

5) Ms-Net [39] uses three layers ConvLSTM for weather
prediction, we follow the architecture of the model and
use MS-nowcasting+LV.

In models which do not use time series modeling, the
time dimension is simply merged into the feature channel
dimension. And we use 64–32 LV operations to all models.
The evaluation metrics for the experimental results are RMSE
and mean absolute error (MAE). RMSE and MAE are the
common evaluation metrics for regression tasks.

Our models and all deep learning baselines are implemented
by PyTorch. All methods are evaluated on a Linux server with
two GPUs. We sample all initialization values from normal
distribution, and use Adam [51] as the optimizer. The initial
learning rate is set to 1e-3. We reduce the learning rate at
Plateau with factor = 0.25 and practice = 5 for learning rate
adjustment, and early stopping is set to 20, which means the
learning rate is reduced to 0.25 times of the last one when the
loss function does not decrease with five epoch at evaluation
set. All models use the same input variables, the lead time is
24 h with four-time slices, and the output is the maximum and
minimum temperature for the next five days. The code will be
released at https://github.com/DraymonKey/FCCN.

C. Performance Comparison

Table III shows the overall performance of the five baselines
and our model. We report the five-day average RMSE
and average MAE. Underlined are the best results for the
baselines, and bolded are the best results for all models.
Our model achieves the best results for all but the maximum
temperature of London RMSE, and the difference between
our model and the best baseline is small. Specifically, our
model achieves (5.3%, 7.3%) and (5.2%, 6.6%) improvements
beyond the best baseline on MAE and RMSE on the
Beijing dataset for (maximum and minimum temperature)
prediction, respectively. Similarly, the improvement of MAE
and RMSE on Xi’an dataset is (6.4%, 6.4%) and (5.7%,
5.5%), respectively. This indicates that our model has the best
performance compared to baselines.

Different area prediction results vary greatly because of
geographic factors. The climate of the Beijing area is the warm
temperate humid monsoon, with large temperature variations
and the largest forecast errors in our experiment. Xi’an
areas have a higher average elevation and gentler undulations
than Beijing, showing a trend of high, low, and high-and-
low from northwest to southeast, and the prediction error is
smaller than in Beijing. In the results of Table III, expect the
RMSE of the maximum temperature close to MS-Net, we still
show an improvement in other prediction indicators. But the
performances of each method in London are very similar and
good. From Table II, we can find that 94.53% of the grid
points in London are below 200 m above sea level, and the
other grid points are below 400 m. Meanwhile, London is a
typical plain terrain and presents a marine climate, and the
climate pattern is simple and far more predictable. We use
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TABLE I
STATISTICS OF DATASET

TABLE II
ALTITUDE STATISTICS OF THREE AREAS

a dynamic convolution kernel to extract more local weather
patterns, but the performance in the plain has not been greatly
improved. However, it is worth noting that our model performs
better in complex terrain than others. We also show an instance
of maximum temperature prediction result and RMSE results
for each quarter in Appendix.

Different models have different prediction results due to
different modeling capabilities. In all models, MOLR and
RN19 have the worst results, which we believe is caused
by less consideration of information at different scales and
temporal information. FCN is a class of Vi-T-based models
with large representational capacity, and it is easily overfitting
in our dataset leading to poor generalization performance.
In addition, the UU-Net model fuses the features of different
scales and shows a great improvement over RN19 which
only considers only one scale. This proves the effectiveness
of modeling at different scales for weather prediction. The
MS-Net model, which is a spatio-temporal prediction model,
further enhances the effectiveness of only spatial prediction
models. Our model simulates local meteorological models and
performs spatio-temporal prediction at multiscale.

D. Five Days Result and Different Quarters Result

We also report the RMSE of each model for the future five
days temperature prediction results, as shown in Fig. 4. From
Fig. 4, it can be seen that MS-Net and ours with dynamic
decoder perform better than others, which indicates that
temporal feature and spatial feature are equally important for
the temperature prediction problem. RN19 and MOLR models
are less effective than other models, and it is not effective to
use scale-invariant network to fit the transfer of meteorological
information in complex terrain. In addition, the FCN, which
has a larger model capacity, has comparable performance to
the MS-Net around two days forecast time, but is less effective
than MS-Net for 3–5 days of prediction. Also, UU-Net, which
performs multiscale feature fusion, has reduced performance
after the first three days. MS-Net, which considers spatio-
temporal features, has good performance in 1–5 days. It is
noteworthy that our model has the best performance from
one to five days, and still maintains a good performance as
time goes on. The multiscale information fusion increases the

perceptual field on the one hand and captures hierarchical
weather features at different levels on the other.

In the results of the Xi’an region, similar to the prediction
results for the Beijing region, the model with only spatial
modeling has good results on the first day, and there is a sharp
performance decline as the prediction time moves on. MS-Net,
which has the ability of spatio-temporal modeling, has a better
effect result within five days. The result of our model in one
day is similar to the MS-net’s, but ours has a better effect over
2–5 days. This is due to the fact that conditional convolution
can simulate meteorological patterns well, which is similar to
local meteorological patterns. The meteorological information
would be stopped by the Qinling Mountains, but would be well
propagated in the Guanzhong Plain, which we will discuss in
Section IV-E. Overall, our model has good performance in the
long time series compared to other models.

E. Ablation Study and Parameter Sensitivity

Then we study the effectiveness of each module in our
model. The FCCN mainly includes fine-grained conditional
convolution and multiscale feature fusion, and we will
analyze these two parts separately. For the fine-grained
conditional convolution, whose parameters come from three
parts, the global shared convolution parameters are the same
as the vanilla convolution, and we add two modules (geo-
graphic adaptive parameters and data adaptive parameters),
respectively, for the ablation experiments on the vanilla
convolution. To demonstrate the effectiveness of the two
adaptive parameters, we also report and analyze Xi’an result
finely. For the multiscale feature fusion module, we remove
the downsampling block in the encoder and the upsampling
block in the decoder for the ablation study.

The results of the ablation experiment in Beijing and
Xi’an region can be found in Table IV. GSW, GAW,
and DAW represent the GSW, GAW, and DAW. Both of
our proposed convolution enhancement components improve
the performance of vanilla convolution. When using vanilla
convolution, our model gets only 2.9471 RMSE for the
maximum temperature in Beijing, which is slightly higher than
the performance of MS-Net. When only local GAWs are added
to the model, the results are more significantly improved than
vanilla convolution. Our model takes external factors such
as topography and date information into full consideration,
which improves the modeling ability of the model for complex
terrain. It is worth noting that the addition of both volume
modules to the general convolution has better results compared
to the addition of a single module, which is because the two
modules enhance the performance and capacity of the model in
complex terrain and can capture more local patterns to improve
the prediction of the model.
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TABLE III
RESULT OF EXPERIMENT

Fig. 4. We show five days RMSE result of Beijing and Xi’an. (a) and (b) Result of Beijing area. (c) and (d) Result of Xi’an area. Our model has the best
result in the next five days around Beijing and Xi’an.

TABLE IV
ABLATION STUDY OF THE FINE-GRAINED CONDITIONAL CONVOLUTION

We analyze the effectiveness of the multiscale feature
fusion. In Table V, the “w/o u&d” means that the upsampling
and downsampling blocks are not used in the model, so the
feature map remains unchanged all the time. Compared with
the model using uniform scale features, our model achieves
an average RMSE improvement of 0.22 in Beijing and
0.15 in Xi’an. This proves the effectiveness of multiscale
feature fusion. Fusion based on different scale features

can greatly improve the receptive field. In addition, the
feature modeling of different scales in our model uses
a strong prior knowledge, synoptic scale system, which
proposes that different meteorological elements flow on
different scales. The multiscale feature fusion effectively
improves the modeling ability on climate patterns of
different scales and improves the prediction effect of the
model.
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Fig. 5. Head number impact of the RMSE in Beijing and Xi’an area.
(a) Impact of head numbers in Beijing. (b) Impact of head numbers in Xi’an.

Fig. 6. Layer number impact of the RMSE in Beijing and Xi’an area.
(a) Impact of layer number in Beijing. (b) Impact of layer number in Xi’an.

TABLE V
ABLATION STUDY OF THE UPSAMPLING AND DOWNSAMPLING BLOCKS

Fig. 7. We show 14 August∼18 August 2018 maximum temperature
prediction result of Beijing area.

Fig. 5 shows the impact of head numbers on the model.
In Beijing area, when the number of heads is increased
from 2 to 8, the performance of the model is improving. When
the number of heads is increased from 8 to 16, the performance
of the maximum temperature is slightly improved, and the
minimum temperature result is the same as the eight heads.
In addition, for the Xi’an area, when the number of heads
increases from 8 to 16, the result of the model becomes bad.
Fig. 6 shows the prediction results of the model layers number.
When the number of layers increases from 2 to 3, the model
effect is greatly improved. However, when the model layers

Fig. 8. We show four quarters max temperature RMSE result of Beijing and
Xi’an. (a) Result of Beijing area. (b) Result of Xi’an area.

number is further enlarged, the model is more likely to be
overfitting and the performance becomes worse. Our model
works best when the number of heads is eight and the number
of layers is three.

V. CONCLUSION

In this article, we propose a new fine-grained conditional
convolution method to model local meteorological flows
and predict temperature, which improves the capture ability
of convolution methods for local meteorological patterns.
We use two local adaptive parameter modules to constrain the
convolution kernel so that the information aggregation strategy
for a central point changes with the geographical location and
meteorological feature. In addition, in order to better model
meteorological data, we use the prior knowledge based on the
synoptic scale system for multiscale feature fusion. Experi-
ments have proved the effectiveness of our proposed method.

In the future, we think the incremental learning of
meteorological data is necessary. Training models on large-
scale weather data are very resource-intensive. But weather
data are constantly being collected, and the latest data
often carries some new weather trends and is important
for prediction. How to learn new data with low resource
consumption rates and restrain catastrophic forgetting is the
future direction for weather prediction. Finally, we think a
huge dataset, huge backbone, and training skills are also
research focus, which is the same as the CV and NLP.

APPENDIX

MORE COMPARISON AND VISUALIZATION

As shown in Fig. 7, we obtained the maximum temperature
prediction results of our model from August 14 to August
18 by using the data of August 13, 2018.

In Fig. 8, we show the RMSE of different quarters in the
Beijing region and the Xi’an region. We divide the year into
four quarters by month, January–March, April–June, July–
September, and October–December. In the Beijing region, the
prediction of the second quarter is particularly difficult and
that of the third quarter is the easiest, with the RMSE D-value
between these in our model being 2.7, and the first and fourth
quarters RMSE falling in between. The temperature in the
Beijing area will rise quickly in spring. Beijing’s summer
high temperature is strongly persistent and stable, with a small
difference between day and night, so the model is easier to
predict the temperature of the third quarter. Beijing’s autumn
is short. But the winter is cold and long. In Spring, the
temperature of Xi’an rises quickly, but the rising is unstable,
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making Q1 and Q2 forecasts more difficult. The summer in
Xi’an is hot and rainy, and the temperature is stable in July and
August, which is easy to predict. The fall season is influenced
by the Pacific ironical maritime air and the winter in Xi’an is
lack of precipitation, cold and dry. Like other deep learning
models, the prediction result of our model is greatly affected
by seasonal changes. In the second and third quarters, our
model is more outstanding than the previous SOTA. In the first
quarter and the fourth quarter, our model has little advantage.
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